
Hop-by-hop Computing for Green Internet Routing

Yuan Yang∗, Dan Wang†, Mingwei Xu∗, Suogang Li‡
∗Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Computer Science and Technology, Tsinghua University
†The Hong Kong Polytechnic University Shenzhen Research Institute, The Hong Kong Polytechnic University

‡CERNET National Network Center

yyang@csnet1.cs.tsinghua.edu.cn, csdwang@comp.polyu.edu.hk, {xmw, lisg}@cernet.edu.cn

Abstract—In this paper we study energy conservation in the
Internet. We observe that different traffic volumes on a link can
result in different energy consumption; this is mainly due to such
technologies as trunking (IEEE 802.1AX), adaptive link rates, etc.
We design a green Internet routing scheme, where the routing can
lead traffic in a way that is green. We differ from previous studies
where they switch network components, such as line cards and
routers, into sleep mode. We do not prune the Internet topology.

We first develop a power model, and validate it using
real commercial routers. Instead of developing a centralized
optimization algorithm, which requires additional protocols such
as MPLS to materialize in the Internet, we choose a hop-by-hop
approach. It is thus much easier to integrate our scheme into
the current Internet. We progressively develop three algorithms,
which are loop-free, maximize energy conservation, and jointly
consider green and QoS requirements such as path stretch. We
comprehensively evaluate our algorithms through simulations on
synthetic and real topologies and traffic traces. We show that the
power saving in the line cards can be as much as 50%.

I. INTRODUCTION

Energy conservation has become a global concern nowa-
days and energy cost is predicted to increase in the forthcoming
future. As a consequence, how to save energy has become an
important issue in the design of such areas as data centers [1],
building management [2], to name but a few.

In the Internet, routers and switches account for the major-
ity of energy consumption. More and more high performance
routers are developed and deployed currently. For example, a
Cisco CRS-1 router can draw about one MegaWatt under full
configuration, 10,000 times more than a PC. By 2010, 5000
Cisco CRS-1 routers were deployed1. Facing such high energy
consumption, there are many studies for energy conservation
of the Internet [3][4][5][6][7][8].

In general, these studies switch network components, such
as line cards and routers, into sleep mode. As such, these
studies compute a topology with less nodes and links, which
may degrade network resistance against failures. The network
components to be turned off are carefully chosen and tradeoffs
are investigated to balance network performance and energy

The work is supported by the National Basic Research Program of China
(973 Program) under Grant 2012CB315803, the National Natural Science
Foundation of China (61133015),and the National High-Tech Research and
Development Program of China (863 Program) under Grants 2011AA01A101.
Dan Wang’s work is supported in part by the National Natural Science
Foundation of China (61272464).

1http://newsroom.cisco.com/dlls/2010/prod%5F030910.html

conservation. To realize these approaches, MPLS or additional
protocols are usually necessary.

In this paper, we study “green” routing where we do not
prune the Internet topology. A key observation that makes this
possible is that the energy consumption for packet delivery can
be different in different traffic volumes [9]. Therefore, we can
select paths that consume less power while delivering traffic.
Intrinsically, this is caused by technologies including trunking
(or bundled links) [10] and adaptive link rates (ALR) [11]
[12]. Trunking, standardized in IEEE 802.1AX, refers to the
fact that a logical link in the Internet often reflects multiple
physical links (e.g., a 40 Gbps link may consist of four 10
Gbps links) and when traffic volume is less, less physical
links can be used and less energy is consumed. ALR is an
ethernet technology where link rate and power dynamically
scale with traffic volume. As such, even without changing the
topology (i.e., by switching routers into sleeping mode), energy
consumption can still vary greatly given different routings that
result in different traffic volume on the paths. Intrinsically, our
work shows that there can be more refined control than an
on-off (0-1) control of the routers in energy conservation. We
further illustrate the impact of this through an example.

Example Consider a network in Fig. 1, in which links
(a, b) and (b, c) both consist of four parallel OC48 (2.5 Gbps)
physical links and the other three links are single OC192 (10
Gbps) physical links. More specifically, for an OC48 link, there
is a baseline 125.1 Watt energy consumption and an additional
0.006 Watt for each 1 Mbps traffic; and for an OC192 link,
there is a baseline 134.2 Watt energy consumption and an
additional 0.004 Watt for each 1 Mbps traffic. In this topology,
shortest path routing will generate three paths on each link.
For example, (a, b) will support paths a ↔ b, a ↔ c and
b ↔ e. Assume that the traffic volume is 1 Gbps on each
path. Links (a, b) and (b, c) then have to power on two parallel
OC48 physical links because the total traffic on these links is
3 Gbps. The total energy consumption is (125.1 + 1500 ×
0.006) × 4 + (134.2 + 3000 × 0.004) × 3 = 975.0 Watt. If,
however, we use a routing where every path is the same as the
shortest path except that path a ↔ c = (a, e, d, c), then links
(a, b) and (b, c) will only carry 2 Gbps and power on only
one OC48 physical link each. The total energy consumption is
(125.1+2000×0.006)×2+(134.2+4000×0.004)×3 = 724.8
Watt, a 25.7% improvement.

The above example is not special. Yet to systematically
study this problem, we first need to quantify an appropriate
power model, i.e., the relationship between power consumption

978-1-4799-1270-4/13/$31.00 c©2013 IEEE

and traffic volume following the standards of trunking/ALR.
Second, we need designs to maximize energy conservation.
There are two possible ways. First, we can formulate the
problem into an optimization problem, analyze the problem
complexity and design a centralized routing algorithm. The
algorithm may find an optimal or near optimal solution; and
to establish the routing paths after the computation, we can
use MPLS. We plan a future study in this direction.

In this paper, we instead choose a hop-by-hop approach.
More specifically, each router can separately compute next
hops, the same as what they do in Dijkstra today. We can
then easily incorporate the routing algorithm into the OSPF
protocol. Under this hop-by-hop design, we face the following
challenges: 1) to be practical, the computation complexity
should be comparable to that of shortest path routing (i.e., Di-
jkstra) and, more importantly, the routing must be loop-free; 2)
hop-by-hop computing should maximize energy conservation;
and 3) important QoS performance of the network such as path
stretch may be considered concurrently, and can be naturally
adjusted.

We present a comprehensive study. We first develop a
power model and validate the model using real experiments in
commercial routers. We then develop principles and a baseline
hop-by-hop green routing algorithm that guarantees loop-free
routing. The algorithm follows the widely known algebra with
isotonic property. We further develop an advanced algorithm
that substantially improves the baseline algorithm in energy
conservation. We also develop an algorithm that concurrently
considers energy conservation and path stretch, and conduct an
in-depth study on maximizing energy conservation with QoS
requirements. We evaluate our algorithms using comprehensive
simulations on synthetic and real topologies and traffic traces.
The results show that our algorithms could save more than
50% energy on line cards.

The rest of this paper is organized as follows. Section II
presents related work. The power model is presented in Section
III. The design outline and properties of routing algebra are
discussed in Section IV. Section V is devoted into our design
of hop-by-hop green routing algorithms and analysis. Section
VI shows the evaluation and Section VII concludes the paper.

II. RELATED WORK

Together with the world-wide objective to build a greener
globe, more and more computing systems include energy
conservation into their design principles [1] and there are
efforts to develop a greener Internet as well [13][14].

First, there are studies on saving energy of the routers.
For example, there are studies to develop a better forwarding
behavior so as to save energy from the TCAMs [15] of a router.

Second, there are studies on energy conservation of the
Internet from upper layers point of view. For example, Energy
Efficient TCP [16] is proposed to perform congestion control
with dynamic bandwidth adjustment. Note that the energy
saving of such upper layer behavior control is realized by
translating into better router control in the network layer.

Third, there are studies to save energy from a network
routing point of view. GreenTE [3] is proposed to aggregate
traffic using MPLS tunnels, so as to switch the under-utilized

network components into sleep mode and thus save energy.
REsPoNse [4] is proposed to identify energy-critical and on-
demand paths offline. The packets are delivered online also
with the objective to effectively aggregate traffic and switch
more network components into sleep mode. GreenTE and
REsPoNse are both centralized schemes. GreenOSPF [5] is
proposed to aggregate traffic in a distributed fashion and
switch the network components into sleep mode. However, to
achieve a good performance, a centralized algorithm [6] is still
needed to assign sleeping links. ESACON [7] is proposed to
collaboratively select sleeping links with special connectivity
properties. Routing paths are then computed after these links
are removed. A fully distributed approach is proposed [8]
which collects global traffic information and aggregates traffic
to switch appropriate network components into sleep mode.

Our approach falls into the third category discussed above,
yet it differs from the aforementioned schemes in the aspects
as follows. First, all the previous proposals set network de-
vices or links into sleep mode. Our design is based on the
observation that different traffic volumes also have different
energy consumption. A routing algorithm may take this into
consideration. To the best of our knowledge, we are the first
to propose such a scheme. Second, though some previous
schemes compute the network components to be shut down
in a distributed fashion, great changes to the current routing
protocols are still needed. Our routing computation is hop-by-
hop and Dijkstra-oriented, which we believe is easier to be
incorporated into the current routing architecture.

We may consider green as one type of services that the
Internet should be provisioned. There are many studies on
Internet Quality of Service [17]. There were two different
approaches in Internet QoS support beyond shortest path
routing. One is centralized computation [18]. The advantage is
that since different types of services usually introduce conflicts,
a centralized scheme can compute optimal or near optimal
solutions. But the disadvantage is that centralized computation
requires additional protocols, which is a non-trivial overhead.
The other is to maintain hop-by-hop computation by managing
different types of services into a singular link weight [19]. A
seminal paper [19] develops a routing algebra model and shows
that to make hop-by-hop computation loop-free requires the
link weights to have certain isotonicity properties.

In this paper, we also leverage the algebra model to develop
hop-by-hop computing for green Internet routing, which is
loop-free. We have a set of algorithms, by which we gradually
improve the energy conservation performance.

III. POWER MODEL

Our objective is to model the relationship between link
power consumption and traffic volume. We first present the
router operation backgrounds and our modeling details. Then
we use simulations and experiments to validate our modeling.

A. Router Operation and Power Modeling

A link between two routers is physically connected with
two line cards, and the line cards consume the majority power
of the routers [9]. We thus use link power consumption to
abstract the power consumption of the line cards.

10G

10G10G

2.5G×4 2.5G×4

The shortest path
between a and c

The green path
between a and c

a

b

c

de

 0

 200

 400

 600

 800

 0 1000 2000 3000 4000

p
o

w
e

r(
W

a
tt

)

traffic volume(Mbps)

non-trunk link
trunk link

(a)

 0

 200

 400

 600

 800

 0 1000 2000 3000 4000

p
o

w
e

r(
W

a
tt

)

traffic volume(Mbps)

measured value

(b)

Fig. 1: An example of green routing

with trunk links.

Fig. 2: The link power model. (a) The traffic-power curves defined by Eq. (1) and Eq.

(4). (b) The measured traffic-power curve.

We can divide the power consumption into three categories:
1) power consumed by OS and control plane (this is constant
to the traffic volume and called the idle power); 2) power
consumed by line card CPU processor (this is super-linear to
the traffic volume); and 3) power consumed by operations like
buffer I/O, packet lookup, etc. (this is usually linear to the
traffic volume).

There are many components in a line card. With advanced
technologies, many components can individually change to
low-power states or be turned off after the traffic volume is
reduced below different levels of thresholds. For instance, an
Intel processor has active state C0, auto halt state C1, stop
clock state C2, deep sleep state C3 and deeper sleep state C42,
all with different power consumption. Similarly, a PCIe bus
which connects the chips has the states D0, D1, D2, D3hot and
D3cold3. Since turning on/off of these components is discrete,
we can generally see a discrete stair-like behavior in power
consumption (see Fig. 2(a)).

We can classify two types of links: 1) trunk links where
advanced technologies are adopted and components can be
individually turned off, resulting in a stair-like behavior in
power consumption and 2) non-trunk links. Non-trunk links
are still the majority today. Yet, trunk and ALR technologies
are witnessing fast development.

We first model the non-trunk links and then the trunk links
by including the stair-like behavior.

Note that a logical link in the Internet may consist of
several bundled physical links. Let l be a link, and nl the
number of physical links. Let xl be the traffic volume on this
link; then the traffic on each physical link is xl

nl
. Let δl be

the idle power of a line card. The power consumption for the
first category (i.e., CPU, super-linear) on each physical link

can be modeled as μl

(
xl

nl

)αl

, where μl and αl are constants

(α > 1) [20]. The power consumption for the second category
(buffer I/O, packet lookup, etc, linear) on each physical link
is ρl

xl

nl
, where ρl is a constant. Finally, let Pno

l be the total
power consumption of a non-trunk link, and then we have

Pno
l (xl) = 2nl ×

(
δl + ρl

xl

nl
+ μl

(
xl

nl

)αl
)
. (1)

2http://www.intel.com/support/processors/sb/CS-028739.htm
3http://www.pcisig.com/specifications/conventional/pcipm1.2.pdf

Here 2nl denotes the fact that the power is consumed by the
line cards on both ends of the link.

For a trunk link, the difference is the discrete stair-like
behavior. We model two intrinsic reasons for the discrete stair-
like behavior: 1) physical links can be powered off in different
traffic volumes; and 2) different components in line cards can
be turned-off in different traffic volumes.

Let nc ∈ {0, 1, . . . , nl−1} be the number of physical links
being powered off and r0, r1, . . . , rnl−1(r0 < r1 < · · · <
rnl−1) are traffic volume thresholds to power off a physical
link. Then we have:

nc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nl − 1, if r0 ≤ xl < r1
nl − 2, if r1 ≤ xl < r2
. . . , . . .
1, if rnl−2 ≤ xl < rnl−1

0, if rnl−1 ≤ xl

(2)

Similarly, let the number of line card states be ns, and
δc = δi for i ∈ {0, 1, . . . , ns − 1} be the power reduced by
switching a line card into the i-th state (0 = δ0 < δ1 < · · · <
δns−1). Then we have

δc =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

δns−1, if r′0 ≤ xl

nl−nc
< r′1

δns−2, if r′1 ≤ xl

nl−nc
< r′2

. . . , . . .
δ1, if r′ns−2 ≤ xl

nl−nc
< r′ns−1

δ0, if r′ns−1 ≤ xl

nl−nc

(3)

where r′0, r
′
1, . . . , r

′
ns−1 are traffic volume thresholds.

Finally, let P a
l be the total power consumption of a trunk

link and we have

Pa
l (xl) = 2(nl − nc)

(
δl − δc +

ρlxl

nl − nc
+ μl

(
xl

nl − nc

)αl
)

(4)

Eq. (4) is equivalent to Eq. (1) if nc and δc equal 0.

B. Simulation and Experimental Validation

Eq. (1) and Eq. (4) are abstract. For the illustration purpose,
we plot numerical examples in Fig. 2(a). We set the link to
consist of four 1 Gbps physical links (i.e., nl = 4). The idle
power δl for each physical link is set to 180 Watt. We set
ρl = 0.0005, μl = 0.001 and αl = 1.4; these are based on
the suggested values in [9] and [20]. We set r0, r1, r2, r3, r4
to 0, 1000, 2000, 3000, 4000 Mbps. We assume that there are
5 states for the line card components, which can reduce power

by 5, 3.5, 2, 1, 0 Watt respectively. We set r′0, r
′
1, r

′
2, r

′
3, r

′
4 to

0, 200, 400, 600, 800, 1000 Mbps. We obtain these thresholds
from our experiments.

We see that for a non-trunk link, the power consumption
is slightly super-linear to the traffic volume. For a trunk link,
the power consumption shows a much bigger difference and
a discrete stair-like behavior. This means that smaller traffic
volume leads to more energy conservation for a trunk link if
appropriately managed. We further validate this power model
with experiments using a real commercial router.

We set up the experiment by generating packets of 64
bytes with a PC and sending the packets to a commercial
BitEngine12000 router4, through four 1 Gbps ethernet links.
The traffic volume varies from 1 Mbps to 4000 Mbps. The
router has four 4GE line cards and powers on a proper number
of line cards to forward the traffic. We measure the power of
the 4GE line cards by connecting an AC ammeter with the
AC-input power supply circuit. We can read the electric current
value from the ammeter. The results are shown in Fig. 2(b). We
see that the curve matches our model closely. As an example,
when we increase the traffic from 1000 Mbps to 1100 Mbps,
the power consumption shows a sharp increase from 210 Watt
to 380 Watt.

In this paper, we will focus on the power consumed by
traffic. Therefore, we subtract the idle power P a

l (0) or Pno
l (0).

The final power model Pl(xl) is

Pl(xl) =

{
P a
l (xl)− P a

l (0) l is a trunk link
Pno
l (xl)− Pno

l (0) l is a non-trunk link
(5)

IV. OVERVIEW AND PRELIMINARIES

The objective of our green Internet routing is to minimize
the total energy consumption in the network. We choose a hop-
by-hop approach because it can be easily integrated into the
current Internet routing architecture.

Formally, a network is modeled as G(V,E), where V de-
notes the set of nodes and E the set of links. A path from node
s to d is a sequence of nodes (v0 = s, v1, v2, . . . , vn = d),
where (vi, vi+1) ∈ E for 0 ≤ i < n. Following Section III, let
xl be the traffic volume and Pl(xl) follow the power model
in Eq. (5). The objective is thus min

∑
l∈E Pl(xl), under the

constraint that the source-destination paths are loop-free and
can be polynomially computed at each node.

For a hop-by-hop approach, simply computing the “green-
est” path (i.e., with smallest energy consumption) for each
source and destination pair may not minimize the total en-
ergy consumption. The traffic of different paths collectively
increases the utilization ratio of links, and leads to greater
energy consumption. This is a standard local vs. global optimal
problem. One possible solution is to let each router compute
routing based on global traffic matrices that reflect the volume
of traffic flowing between all possible source and destination
pairs. However, it is not easy to obtain a traffic matrix, because
1) direct measurements to populate a traffic matrix is typically
prohibitively expensive [21], and 2) the procedure to estimate
a traffic matrix from partial data is of high complexity, since
the associated optimization problem is non-convex [21].

4http://www.bit-way.com/product-a-6.html

Thus, for a hop-by-hop scheme whose complexity is com-
parable to that of Dijkstra, we design a path weight similar to
the path weight used by Dijkstra, where the weight reflects the
total energy conservation based on partial traffic data.

The path weights must be carefully designed to make
sure hop-by-hop computing is loop-free. We show an example
where the routing is not loop-free. We show a topology
in Fig. 3. Assume that (a, b), (a, c) are non-trunk links and
(b, c) is a trunk link. The power consumption of the links is
P(a,b)(xl) = 0.1xl, P(a,c)(xl) = 0.3xl, and P(b,c)(xl) = 0.1xl

if xl < 10, or P(b,c)(xl) = 0.1xl + 5 if otherwise.

Given the traffic demand of a source node, assume a hop-
by-hop scheme straightforwardly chooses to compute a path
weight as the sum of the power consumption of all the links
on the path (i.e., the “greenest” path). Suppose node a has
a traffic demand of 5 to send to node c. The path weight of
(a, b, c) is 0.1 × 5 + 0.1 × 5 = 1 and the path weight of
(a, c) is 0.3× 5 = 1.5. Thus node a will choose path (a, b, c)
to deliver packets. Meanwhile, suppose node b has a traffic
demand of 10 to send to node c. The path weight of (b, a, c)
is 0.1 × 10 + 0.3 × 10 = 4 and the path weight of (b, c) is
0.1 × 10 + 5 = 6. Thus node b will choose path (b, a, c) to
deliver packets. As a result, a loop is introduced between node
a and b, and packets destined to c will never reach c.

b

a c

The path to c
calculated by b

The path to c
calculated by a

Fig. 3: An example of routing loops.

Intrinsically, to achieve a loop-free routing, there are certain
properties that the path weights should follow. A seminal work
[19] first explained the properties through a routing algebra
model. Here we briefly present the background.

A routing algebra (also called a path weight structure) is
defined as quadruplet (S,⊕,�, w). S denotes the set of path
weights. ⊕ is a binary operation upon the path weights. �
is an order relation to compare two path weights. w is a
function that maps a path to a weight. Let p ◦ q denotes the
concatenation of paths p and q. Then w(p◦ q) = w(p)⊕w(q).
In particular, the weight of a path p = (v0, v1, . . . , vn) is
w(p) = w(v0, v1)⊕w(v1, v2)⊕· · ·⊕w(vn−1, vn). We call the
weight of a path which has only one hop a link weight. The
path with the lightest weight is preferred. Formally, path p is
the lightest path if w(p) � w(q) for any q.

For example, in shortest path routing, the path weight is
the sum of the link lengths. Thus, S = R+ and ⊕ is +. The
shortest path is preferred and thus � is ≤. In widest routing,
where one needs to find a path with the largest bandwidth, the
path weight equals the bandwidth of the bottleneck link. Thus
S = R+, w(p)⊕ w(q) means min(w(p), w(q)), and � is ≥.

There are two steps to avoid loops in hop-by-hop comput-
ing [22]: 1) certain properties need to be satisfied (intrinsically,
path concatenation should follow certain properties) and 2) a
routing algorithm is designed accordingly. We introduce a few
definitions from [22].

Definition 4.1: (S,⊕,�, w) is left-isotonic if w(p1) �
w(p2) implies w(q◦p1) � w(q◦p2), for all the paths p1, p2, q.

Similarly, (S,⊕,�, w) is strictly left-isotonic if w(p1) ≺
w(p2) implies w(q◦p1) ≺ w(q◦p2), for all the paths p1, p2, q.

Definition 4.2: (S,⊕,�, w) is right-isotonic if w(p1) �
w(p2) implies w(p1 ◦ q) � w(p2 ◦ q), for all the paths
p1, p2, q. Similarly, (S,⊕,�, w) is strictly right-isotonic if
w(p1) ≺ w(p2) implies w(p1 ◦ q) ≺ w(p2 ◦ q), for all the
paths p1, p2, q.

We have the following theorems [22][23].

Theorem 4.1: [22] If the weight structure (S,⊕,�, w) is
left-isotonic, for every s, d ∈ V , there exists a lightest path
from s to d such that all its subpaths with destination d are
also lightest paths. Such a lightest path is called a D-lightest
path. If the left-isotonicity is strict, all lightest paths are D-
lightest paths.

We can get a consistent (thus loop-free) hop-by-hop routing
if every node uses D-lightest paths to forward packets. To
compute D-lightest paths, we have:

Theorem 4.2: [23] Dijkstra’s algorithm that uses d as the
root node is guaranteed to find the D-lightest paths if and only
if the path weight structure (S,⊕,�, w) is strictly left-isotonic.

V. HOP-BY-HOP GREEN ROUTING ALGORITHMS

We now study hop-by-hop green routing (Green-HR). We
first propose a path weight and a baseline algorithm Dijkstra-
Green-B to achieve loop-free. We then study some intrinsic
relationships between link weights and power consumption,
and develop an advanced algorithm Dijkstra-Green-Adv that
improves energy conservation. We further develop algorithm
Dijkstra-Green that concurrently considers energy conservation
and path stretch. Finally we present the intrinsic hardness of
designing hop-by-hop green routing with QoS requirements.

A. Dijkstra-Green-B Algorithm

From Section IV, we see that the key is to develop an
appropriate weight for a path so that it incorporates “green”
and holds isotonicity. A Dijkstra-oriented algorithm can then
be developed to achieve loop-free hop-by-hop routing.

A preliminary observation is that though we cannot choose
the “greenest” paths, for energy conservation from the whole
network point of view, we should not choose a path that is too
long either, since it accumulatively consumes more energy.

We thus set the weight as follows. For each destination
node d, we assign xv

0 as a starting weight. This xv
0 is deter-

mined by the total bandwidth associated with d and we will
specify this later. For a path p = (s = v0, v1, . . . , vn = d),
we set a “virtual traffic volume” for each link l = (vi, vi+1),
i ∈ {0, 1, . . . , n − 1} to xv

l = xv
0 · βh. Here β (β > 1) is

a constant and h is the hop number of the lightest-shortest
path pls(vi+1, d), i.e., one of the lightest paths from vi+1

to d which has the least number of hops. Intuitively, we
pose an exponential penalty to each additional hop on a
path. The weight of a link is set to Pl(x

v
l), where Pl(·)

follows the power function in Section III. The weight of path
p = (s = v0, v1, . . . , vn = d) is the sum of the weight of each
link:

wb(p) =

n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
, (6)

Here function Hops(p) returns the hop number of path p. Note
that a link’s weight is not a static value, and may vary with
path p and destination node d. However, we can prove the
strict left-isotonicity of this path weight structure.

We define an algebra (S,⊕,�, wb) based on Eq. (6) where
S is R+, � is ≤, wb is given in Eq. (6), and wb(p) ⊕ wb(q)
is equal to wb(p ◦ q) which can be calculated by Eq. (6).

Theorem 5.1: The algebra (S,⊕,�, wb) defined by Eq. (6)
is strictly left-isotonic.

Proof: As shown in Fig. 4, assume p1 and p2 are two paths
from node s to node d. Without losing generality, assume that
p1 is lighter than p2, i.e., wb(p1) ≺ wb(p2). We check the order
relation between wb(q ◦ p1) and wb(q ◦ p2), i.e., the weights
after concatenating p1 and p2 to path q, respectively.

dv0

p1

p2

q

v1 vn=s

The lightest-shortest
path from vi+1 to d

vi+1

Fig. 4: The topology used to prove the strict left-isotonicity of the

path weight structure defined by Eq. (6).

Assume q = (v0, v1, v2, . . . , vn = s). According to Eq. (6)
we have

wb(q ◦ p1) =
n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
+ wb(p1)

and

wb(q ◦ p2) =
n−1∑
i=0

P(vi,vi+1)

(
xv
0 · βHops(pls(vi+1,d))

)
+wb(p2).

Note that the length of the lightest-shortest path from vi to
d is independent of p1 or p2. Because wb(p1) ≺ wb(p2) means
wb(p1) < wb(p2), we can obtain from the above equations
wb(q ◦ p1) < w(q ◦ p2), which means wb(q ◦ p1) ≺ wb(q ◦ p2).

This implies that the strict left-isotonicity holds, and com-
pletes the proof.

Based on Theorem 4.1, 4.2 and 5.1, we can achieve a
consistent (thus loop-free) hop-by-hop routing by applying a
Dijkstra-like algorithm. We develop Algorithm Dijkstra-Green-
B. P in the inputs denotes the set of the traffic-power functions
of all the links in E. In the algorithm, w[v] denotes the weight
of the current path from v to d and ϕ[v] denotes the successor
(or next hop node) of v. N(u) denotes the set of neighbor
nodes of u. h[u] is used to store the hop number of the lightest-
shortest path from u to d. There are a few differences between
Dijkstra-Green-B and the standard Dijkstra. 1) A sink tree
rooted at d is calculated and the algorithm halts once s is
extracted (Step 5 to 7). 2) h[u] is used to record the lightest-
shortest path. 3) A link weight is calculated according to Eq.
(6) in Step 9 and 10.

The computation complexity of Dijkstra-Green-B is the
same as that of the standard Dijkstra in the worst case, i.e.,
O(|E| + |V | log |V |). However, the algorithm can stop once
the path from s to d is finished so the complexity in the best

Algorithm Dijkstra-Green-B()
Input: G(V,E), s, d, P , xv

0 , β;
Output: the green path from s to d which is stored in ϕ[];
1: for each node v ∈ V
2: w[v] ⇐ ∞; ϕ[v] ⇐ null; h[v] ⇐ ∞;
3: Q ⇐ V ; w[d] ⇐ 0; h[d] ⇐ 0;
4: while Q �= φ
5: u ⇐ Extract Min(Q);
6: if u = s
7: return ϕ[];
8: for each node v ∈ N(u)

9: x ⇐ xv
0 · βh[u];

10: � ⇐ P(v,u)(x);
11: if w[u] + � < w[v]
12: ϕ[v] ⇐ u;
13: w[v] ⇐ w[u] + �; h[v] ⇐ h[u] + 1;
14: else if w[u] + � = w[v] and h[u] + 1 < h[v]
15: ϕ[v] ⇐ u; h[v] ⇐ h[u] + 1;
16: return null; //unreachable

case is O(1). Thus, we can expect that the average complexity
is less than that of Dijkstra.

B. Link Weights vs. Energy Conservation

In order to achieve greater energy conservation, we take a
closer look at two main factors affecting power consumption.

1) Link weights vs. Power consumption per unit traffic
volume: Recall the traffic-power functions (Eq. (1) and Eq.
(4)) in Section III. The power consumption of a link increases
with the rise of the traffic volume. The link weight should
reflect this. As a matter of fact, if the traffic volume xl is
proportional to ρl, we can achieve an optimal routing.

Lemma 5.1: If Pl(xl) = ρlxl for any l ∈ E, the minimum
power routing can be achieved by setting the weight of link l
to ρl and running Dijkstra in each router.

Proof: The total power consumption can be represented
by the sum of the power consumed by each path, because
Pl(xl) = ρlxl = ρl

∑
p x

p
l , where xp

l is the traffic volume of

path p that traverses link l. For any path p = (v0, v1, . . . , vn)
which has a traffic volume xp, the power consumption
is

∑n−1
i=0 ρ(vi,vi+1)x

p = xp
∑n−1

i=0 ρ(vi,vi+1). By setting the
weight of each link l to ρl and running Dijkstra in each router,∑n−1

i=0 ρ(vi,vi+1) can be minimized. Thus, the power of path
p is minimized. As a result, the total power consumption is
minimized.

In general, a link weight should reflect dPl

dxl
, i.e., the power

consumption per unit traffic volume. We can set the link weight
to Pl(xl +Δx)− Pl(xl), where Δx is a small constant.

2) Link weight vs.Trunk link: We know that for a trunk link,
if the traffic volume results in a leap to a higher “stair”, there
can be a great power loss. We tend to assign a higher weight
for a trunk link to reduce its traffic volume. However, this
comes with a tradeoff that the end-to-end paths may become
longer and the extra hops also consume power. We can reduce
the power consumption only if the power increment induced
by path stretches is less than the leap of power consumption.

Generally, we take a heuristic by multiplying the weight
of a trunk link with a factor kl

kl = γ

√
xv
0

ru − rd
, (7)

where γ is used to balance the link weights of non-trunk links
and trunk links; xv

0 is still the starting weight; and ru and

rd are calculated as follows. Given traffic volume xl, ru is
the least traffic volume where a leap of power consumption
may occur and ru > xl (recall that we have traffic thresholds
r0, r1, . . . , rnl−1 in our power model in Section III), and let
ru = cl if ru cannot be found, where cl is the capacity of
link l; rd is the largest traffic volume where a leap of power
consumption may occur and rd < xl, and let rd = 0 if rd
cannot be found. We use the historical link load x̄l instead
of the realtime value xl to avoid routing oscillations, because
x̄l has a diurnal pattern in shortest path routing. The intuition
is that if xv

0 is big and/or ru − rd is small, a leap of power
consumption is likely to happen, and we multiply a bigger
penalty kl in selecting this link l.

In what follows, we prove that we can develop a path
weight that is isotonic based on these two improvements. We
admit that these two improvements are preliminary and we
leave more in-depth investigation into future work.

C. Dijkstra-Green-Adv Algorithm

We design a link weight in two steps. First, the weight of
link l is set to Pl(x̄l +xv

0)−Pl(x̄l), where x̄l is the historical
traffic volume estimation for link l. Second, we scale up the
link weight by kl if link l is a trunk link. For a path p, the
weight function wadv(p) is defined as follows.

wadv(p) =
∑
l∈p

(Pl(x̄l + xv
0)− Pl(x̄l)) · kl. (8)

We define an algebra (S,⊕,�, wadv) based on Eq. (8). S
is R+ and � is ≤. wadv is given in Eq. (8), and wadv(p) ⊕
wadv(q) = wadv(p ◦ q), which is equal to wadv(p) +wadv(q).

Theorem 5.2: The path weight structure defined by Eq. (8)
is strictly left-isotonic.

Proof: As shown in Fig. 5, suppose p1 and p2 are two
paths from node s to node d. Without losing generality, we
suppose that p1 is lighter than p2, i.e., wadv(p1) ≺ wadv(p2).
We need to check the order relation between wadv(q ◦p1) and
wadv(q ◦ p2) to prove strict left-isotonicity.

s d

p1

p2

q

Fig. 5: The topologies used to prove the strict isotonicity of the path

weight structure defined by Eq. (8).

According to Eq. (8), we have wadv(q ◦ p1) = wadv(q) +
wadv(p1) and wadv(q ◦ p2) = wadv(q) + wadv(p2). This is
because x̄l and xv

0 do not change when concatenating p1
and p2 to q, respectively. Because wadv(p1) ≺ wadv(p2), i.e.
wadv(p1) < wadv(p2), we obtain wadv(q ◦p1) < wadv(q ◦p2),
which means wadv(q ◦ p1) ≺ wadv(q ◦ p2). This implies that
the path weight structure is strictly left-isotonic.

Based on Theorem 4.1, 4.2 and 5.2, we design an advanced
algorithm which can run in a hop-by-hop manner, namely the
Dijkstra-Green-Adv algorithm.

The algorithm makes only a few modifications to the
standard Dijkstra’s algorithm. There are some new inputs,
including the set of traffic-power functions P , the set of

Algorithm Dijkstra-Green-Adv()
Input: G(V,E), s, d, P , xv

0 , x̄;
Output: the advanced green path from s to d which is stored in ϕ[];
1: for each node v ∈ V
2: w[v] ⇐ ∞;ϕ[v] ⇐ null;
3: Q ⇐ V ;w[d] ⇐ 0;
4: while Q �= φ
5: u ⇐ Extract Min(Q);
6: if u = s
7: return ϕ[];
8: for each node v ∈ N(u)
9: � ⇐ P(u,v)(x̄(u, v) + xv

0) − P(u,v)(x̄(u, v));
10: � ⇐ � · k(u, v);
11: if w[u] + � < w[v]
12: ϕ[v] ⇐ u;
13: w[v] ⇐ w[u] + �;
14: return;

historical traffic volumes x̄, and xv
0 . In the algorithm, w[v]

denotes the weight of the current path from v to d and
ϕ[v] denotes the successor (or next hop node) node of v.
N(u) denotes the set of neighbor nodes of u. The major
difference between Dijkstra-Green-Adv and Dijkstra is that
Dijkstra-Green-Adv calculates the link weight of (u, v) in Step
9 and 10 according to Eq. (8). The computation complexity of
Dijkstra-Green-Adv is the same as that of the Dijkstra-Green-B
algorithm, i.e., O(|E|+ |V | log |V |) in the worst case.

D. Dijkstra-Green Algorithm

We now study the balance between green and normal QoS
requirements for the routing paths. In other words, we want to
investigate whether the pursuit of green may sacrifice typical
routing metrics such as end-to-end delay or bandwidth etc; and
how a balance can be made. As an example, we will develop
an algorithm that jointly consider green and path length. Note
that our pervious algorithms consider path length in the sense
to make the paths greener. Here the path length is considered
as a separate parameter that reflects end-to-end delay.

Clearly, green paths and shortest paths cannot be simulta-
neously achieved. A typical metric to evaluate how a computed
path differs from shortest path computation is path stretch: the
ratio of the length of a source-destination path to that of the
shortest path between this source-destination pair.

We analyze the path stretch of wadv(p) and find that the
path stretch is small for most of the paths; yet there exists some
big stretch when the length of the shortest path is small. Thus,
we develop an algorithm which takes additional considerations
for the “short” paths. Specifically, let Len(p) be the length of
path p. We divide the link length by the root of the shortest
path length to node d. In this way, path length will dominate
in the path weight for short paths, and power consumption
will dominate for long paths. The weight of path p = (s =
v0, v1, . . . , vn = d) is defined as

wg(p) = wadv(p) +
n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

(9)

where ps(vi, vj) denotes the shortest path from node vi to
node vj , and κ is a constant factor which we can use to adjust
the path stretch performance. When setting κ = 0, the weight
naturally converge to the weight in Eq. (8) in Section V-C.

We can similarly define an algebra (S,⊕,�, wg) according
to Eq. (9).

Theorem 5.3: The path weight structure defined by Eq. (9)
is strictly left-isotonic.

Proof: We move the proof to the appendix.

Based on Theorem 4.1, 4.2 and 5.3, we develop a loop-free
hop-by-hop algorithm named Dijkstra-Green.

Dijkstra-Green is similar to Dijkstra-Green-Adv and we
omit the details for the sake of smoothness of presentation.
We add new inputs, including the set of shortest paths ps
and κ. The main modification made to Dijkstra-Green-Adv
is that Dijkstra-Green involves path length in the link weight
to Eq. (8). Since we have to maintain the shortest paths when
the topology changes, the computation complexity of Dijkstra-
Green is O(|E||V |+ |V |2 log |V |) in the worst case.

VI. PERFORMANCE EVALUATION

A. Methodology

We evaluate our algorithms using both synthetic and real
topologies. For the synthetic topologies, we use BRITE5

to generate network topologies and we set the parameters
following [24]. Each dot in our figures is an average of
1000 random and independent simulations. We have two real
topologies: 1) the Abilene backbone with 12 nodes and 15
two-directional links, and 2) the China Education and Research
Network (CERNET) backbone, which has 8 nodes and 12 two-
directional links (9 links are trunk links).6

The link capacities of the synthetic topologies are deter-
mined based on the fact that a node with a big degree is more
likely to hold links with a large capacity [25]. We set a link’s
capacity to 9953.28 Mbps (OC192-1 port) if both end nodes
of the link have a degree greater than 5. The capacity is set
to 2488.32 Mbps (OC48-1 port) if one end node has a degree
larger than 5 and the other has a degree less than 6 but greater
than 2. Finally, the other links’ capacities are set to 622.08
Mbps (OC12-1 port).

For synthetic topologies and CERNET, we create traffic
matrices according to the gravity model [21]. The traffic
volume from node s to d, namely f(s, d), is proportional to
the total output capacity of s and the total input capacity of d,
and is inversely proportional to the square of the hop number
of the shortest path from s to d, as shown in Eq. (10)

f(s, d) =
η ·∑v∈N(s) c(s, v) ·

∑
u∈N(d) c(u, d)

(Hops(ps(s, d)))2
(10)

where η is a scale factor by which we can create different levels
of traffic volume, c(s, v) the capacity of link (s, v), N(s) the
set of neighbors of s, and ps(s, d) is the shortest path from s
to d. We create traffic volumes that result in an average link
utilization ratio between 5% and 70%. There are too many
links overloaded if we try to create an average link utilization
ratio larger than 70%. Such a case rarely happens in the real
world even for a heavily-loaded data center network [26]. For
Abilene, we use real traffic matrices7 and one traffic matrix
is summarized every five minutes. The traffic volume on an
Abilene link is multi-hundred Mbps and the link utilization
ratio is around 10%.

5http://www.cs.bu.edu/brite/
6We remove the stub nodes, which have only one link to the backbone.
7http://www.cs.utexas.edu/%7Eyzhang/research/AbileneTM/

For synthetic topologies, a link is designated to be a trunk
link with probability λ. For Abilene, seven links are randomly
selected to be trunk links.

We assume that a trunk link consists four physical links
with a lower rate than this link’s original capacity. The traffic
volume thresholds for state changes are set to the operation
rates of the links, shown in Table I. The power consumption
per unit traffic volume (ρl) of different operation rates is set
as constants, referring to the measurement results given by [9]
and [27]. The idle power consumption of different operation
rates is calculated using the maximum power8 and shown in
Table I.

TABLE I: Power consumption of line cards

line card operation
rate(Mbps)

maximum
power(W)

ρl

(W/Mbps)
calculated idle
power(W)

1-Port OC3 155.52 60 0.01 58.4
1-Port OC12 622.08 80 0.008 75.0
1-Port OC48 2488.32 140 0.006 125.1
1-Port OC192 9953.28 174 0.004 134.2

Some default values are set as follows. The node number of
a synthetic topology is 100 and the link density is 2 (i.e. total
200 links). Trunk link ratio λ is 0.5. Synthetic traffic matrices
are set to create an average link utilization ratio of 25%. For
Dijkstra-Green-B and Dijkstra-Green-Adv, xv

0(d) is 1/800 of
the sum of the input capacity of node d, and β is 1.5. γ is 10
and κ is 0.0004.

We compare our algorithms with shortest path routing. We
evaluate the power saving ratio, defined as (Ps−Pg)/Ps, where
Ps is the total power consumed by line cards under shortest
path routing, and Pg is the total power under our algorithms.

There is no similar green routing schemes. We select two
recent green routing approaches, i.e., DLF (Distributed Least
Flow) [8] and REsPoNse [4]. These schemes put link/node into
sleep and our scheme does not need link/node level sleep. In
DLF, given that network are connected and capacity are satis-
fied, the least loaded links are selected to sleep. In REsPoNse,
energy-critical paths are computed offline, and used for traffic
aggregation. The links that are not in the energy-critical paths
are switched into sleep mode. Our scheme is more robust
facing failures. To evaluate, we use the total disruption time
under single link failures, defined as

∑
s,d∈V tsd, where tsd

denotes the time period during which node s cannot reach
node d under the failure.

In addition, we also study the path stretch ratio of our
algorithms.

B. Results In Synthetic Topologies

1) Results On Different Traffic Levels: Fig. 6 shows the
power saving ratio as against of traditional Dijkstra. We see
that the power saving ratio can be as much as 55%, when
the average link utilization is low. The power saving ratios
decrease when the average link utilization ratio increases. Yet
we still see a power saving ratio of 38% when the average
link utilization ratio is 65%. Dijkstra-Green-Adv is better
than Dijkstra-Green-B as its design takes more factors that
affect power consumption into consideration. We also see

8http://www.cisco.com/en/US/docs/ios/12%5F0s/feature/guide/12spower.html

that Dijkstra-Green is slightly worse than Dijkstra-Green-Adv,
mainly when the network is in high utilization.

Fig. 7 shows the average path stretch of our algorithms. We
see that the path stretch is consistent and relatively low under
any link utilization ratio. The average path length of Dijkstra-
Green-Adv is about 1.22 times to that of the shortest path.
We consider such stretch may be a fine value in most cases.
The path stretch of Dijkstra-Green is only 1.04. It successfully
considers path length when saving energy.

2) Results On Different Trunk Link Ratios: Fig. 8 shows the
power saving ratio as a function of trunk link ratio λ. Clearly,
the more trunk links are deployed, the more opportunity that
the power can be saved. When all the links are trunk links, a
65% power-saving can be achieved.

Fig. 9 shows the path stretch under different trunk link
ratios. We can see that Dijkstra-Green-B is not affected by the
trunk link ratio. This is because it does not specifically consider
trunk links. On the other hand, as we specially consider trunk
links in the Dijkstra-Green-Adv design, it is more affected
as the number of trunk link increases. The path stretch of
Dijkstra-Green also increases when λ increases, but in a much
limited scale and is always under 1.05.

3) Results On Different Link Densities: Fig. 10 shows the
power saving ratio as a function of link density. We find that
the higher the link density is, the more the power is saved for
Dijkstra-Green-Adv and Dijkstra-Green. This is not surprising
as there are more trunk links when the link density is higher.
The power saving ratio of Dijkstra-Green-B decreases when
the link density increases from 4 to 5. This may be because
Dijkstra-Green-B can choose a path with less hops easily and
cannot avoid trunk links when there are too many links in the
network. Fig. 11 shows the average path stretch increases with
the increment of link density. This is because the shortest path
has a smaller length when the link density is higher.

C. Results In Real Topologies

Fig. 12 shows the power saving ratio, using the Abilene
topology and the traffic matrices collected on March 8, 2004.
The results using the data in other time periods are similar.
We can see the result changes with time, because the traffic
matrix is changing, as shown in Fig. 13. However, the average
power saving ratios of the algorithms are always around 57%.
The results of the three algorithms are similar. Dijkstra-Green-
Adv performs a little worse (within 0.2%) than the other two
algorithms. This is because the topology scale is small (only 12
nodes) and less paths can be found. Thus, Dijkstra-Green-Adv
may choose a longer path, but no more power is saved.

Fig. 13 shows the link utilization ratio. Dijkstra-Green
results in a link utilization ratio very close to that of shortest
path routing, while DLF, which chooses the links with the
least traffic to sleep, results in a nearly doubled link utilization
ratio. This is because our algorithms do not prune links, but
successfully save link power at some critical energy waste
points, e.g., preventing to leap to a higher “stair”. So the traffic
will not aggregate excessively.

Our algorithms do not need to turn link/node level com-
ponent off in the Internet. This is also useful when a fail-
ure occurs, as pruning links easily makes the Internet more
stressful in connectivity and traffic support. With real traffic,

30%

35%

40%

45%

50%

55%

60%

 0 20% 40% 60% 80%

p
o

w
e

r
sa

v
in

g
 r

a
ti

o

average link util. ratio

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 10% 20% 30% 40% 50% 60% 70%

p
a

th
 s

tr
e

tc
h

average link util. ratio

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

 0

10%

20%

30%

40%

50%

 60%

70%

 0 0.2 0.4 0.6 0.8 1

p
o

w
e

r
sa

v
in

g
 r

a
ti

o

trunk link ratio

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

Fig. 6: Power saving ratio as a func. of

avg. link util. ratio (synthetic topology).

Fig. 7: Avg. path stretch as a function of

avg. link util. ratio (synthetic topology).

Fig. 8: Power saving ratio as a function

of trunk link ratio (synthetic topology).

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 0.2 0.4 0.6 0.8 1

p
a

th
 s

tr
e

tc
h

trunk link ratio

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

45%

50%

55%

60%

65%

2 3 4 5

p
o

w
e

r
sa

v
in

g
 r

a
ti

o

link density

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

 1

 1.2

 1.4

 1.6

 1.8

2 3 4 5

p
a

th
 s

tr
e

tc
h

link density

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

Fig. 9: Avg. path stretch as a function of

trunk link ratio (synthetic topology).

Fig. 10: Power saving ratio as a function

of link density (synthetic topology).

Fig. 11: Avg. path stretch as a function

of link density (synthetic topology).

56%

57%

58%

0:00 6:00 12:00 18:00 24:00

p
o

w
e

r
sa

v
in

g
 r

a
ti

o

time

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

 0

4%

8%

12%

0:00 6:00 12:00 18:00 24:00

li
n

k
 u

ti
li

za
ti

o
n

 r
a

ti
o

time

Dijkstra-Green
shortest path

DLF

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14

to
ta

l d
is

ru
p

ti
o

n
 t

im
e

(m
s)

link failure index

REsPoNse
DLF
Dijkstra-Green

Fig. 12: Power saving ratio as a function

of time (Abilene).

Fig. 13: Avg. link util. ratio as a function

of time (Abilene).

Fig. 14: Total disruption time (Abilene).

we can study the disruption time under single link failures.
We compare Dijkstra-Green, DLF and REsPoNse, using the
Abilene topology and one traffic matrix on March 8, 2004.

Fig. 14 shows the results. We see that Dijkstra-Green in-
duces much less disruption time than the other two algorithms,
and for most link failures the time is less than 2 seconds. This
is because we do not prune links from the topology and less
source-destination paths are disrupted by a link failure. The
disruption is mainly caused by routing inconsistency during
convergence. DLF and REsPoNse result in a longer disruption
time (3 - 20 times longer) because they both prune links from
the topology, and more paths are disrupted by a link failure,
until some sleeping links are waked up and the routing is
rebuilt. REsPoNse is the worst because a link failure needs
to be detected by end nodes. Note that the computation time
of DLF and REsPoNse is distributed and reasonable. We
conjecture that centralized approaches such as GreenTE [3]

may have even longer disruption time.

Fig. 15 shows the power saving ratio as a function of the
average link utilization ratio, using the CERNET topology.
CERNET is also a small topology with 8 nodes. Therefore,
the three algorithms perform similarly. Nevertheless, we still
see a 65% of energy saving when the utilization is low and and
Dijkstra-Green can save more than 20% of the energy when
the utilization is as high as 70%.

VII. CONCLUSION

In this paper, we studied green Internet routing. We pre-
sented a power model that quantifies the relationship between
traffic volume and power consumption. We validated our model
using real experiments. We proposed a hop-by-hop approach
and progressively developed algorithms that guarantee loop-
free routing, substantially reduce energy footprint in the In-
ternet, and jointly consider QoS requirements such as path

10%

20%

30%

40%

50%

60%

70%

 0 10% 20% 30% 40% 50% 60% 70%

p
o

w
e

r
sa

v
in

g
 r

a
ti

o

average link util. ratio

Dijstra-Green-B
Dijkstra-Green-Adv

Dijkstra-Green

Fig. 15: Power saving ratio (CERNET).

stretch.

As a very first work, we admit that there are many unsolved
questions. Especially, we are interested in further investigating
a centralized scheme. This is useful when MPLS can be
applied, and may provides theoretical bounding for the possible
maximum power conservation.

APPENDIX A
PROOF OF THEOREM 5.3

Theorem 5.3: The path weight structure defined by Eq. (9)
is strictly left-isotonic.

Proof: As shown in Fig. 16, suppose p1 and p2 are two
paths from node s to node d. Without losing generality, we
suppose that p1 is lighter than p2, i.e., wg(p1) ≺ wg(p2).

dv0

p1

p2

q

v1 vn=s

The shortest path
 from vi+1 to d

vi+1

Fig. 16: The topology used to prove the strict left-isotonicity of the

path weight structure defined by Eq. (9).

Assume q = (v0, v1, v2, . . . , vn = s). According to Eq. (9)
we have

wg(q ◦ p1) =
n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

+ wadv(q) + wg(p1)

and

wg(q ◦ p2) =
n−1∑
i=0

κ · Len(vi, vi+1)√
Len(ps(vi+1, d))

+ wadv(q) + wg(p2).

Note that the length of the shortest path from vi+1 to d
is independent of p1 or p2. Because wg(p1) ≺ wg(p2) means
wg(p1) < wg(p2), we can then obtain wg(q◦p1) < wg(q◦p2),
which means wg(q ◦ p1) ≺ wg(q ◦ p2). This implies that the
strict left-isotonicity holds.

REFERENCES

[1] J. Carter and K. Rajamani, “Designing Energy-Efficient Servers and Data
Centers,” Computer, vol. 43, pp. 76–78, 2010.

[2] V. Siddhartha, P.V. Ramakrishna, T. Geetha and A. Sivasubramaniam,
“Automatic generation of energy conservation measures in buildings
using genetic algorithms,” Energy and Buildings, vol. 43, pp. 2718–2726,
2011.

[3] M. Zhang, C. Yi, B. Liu, and B. Zhang, “GreenTE: Power-Aware Traffic
Engineering,” in Proc. of IEEE ICNP, October 2010, pp. 21–30.

[4] N. Vasic, P. Bhurat, D. Novakovic, M. Canini, S. Shekhar, and D. Kostic,
“Identifying and using energy-critical paths,” in Proc. of CoNext’11,
2011.

[5] A. Cianfrani, V. Eramo, M. Listanti, M. Marazza, and E. Vittorini,
“An Energy Saving Routing Algorithm for a Green OSPF Protocol,” in
INFOCOM IEEE Conference on Computer Communications Workshops,
March 2010, pp. 1–5.

[6] A. Cianfrani, V. Eramo, M. Listanti, and M. Polverini, “An OSPF
enhancement for energy saving in IP networks,” in IEEE INFOCOM
Workshop on Green Communications and Networking, April 2011, pp.
325–330.

[7] F. Cuomo, A. Abbagnale, A. Cianfrani, and M. Polverini, “Keeping the
Connectivity and Saving the Energy in the Internet,” in IEEE INFOCOM
Workshop on GCN, April 2011.

[8] A. P. Bianzino, L. Chiaraviglio, and M. Mellia, “Distributed Algorithms
for Green IP Networks,” in IEEE INFOCOM Workshop on Green
Networking and Smart Grid, March 2012.

[9] J. Chabarek, J. Sommers, P. Barford, C. Estan, D. Tsiang, and S. Wright,
“Power Awareness in Network Design and Routing,” in Proc. of IEEE
INFOCOM, 2008, pp. 457–465.

[10] W. Fisher, M. Suchara, and J. Rexford, “Greening backbone networks:
reducing energy consumption by shutting off cables in bundled links,”
in Proc. of the first ACM SIGCOMM workshop on Green networking,
2010, pp. 29–34.

[11] R. Kubo, J. Kani, H. Ujikawa, T. Sakamoto, Y. Fujimoto, N. Yoshimoto,
and H. Hadama, “Study and Demonstration of Sleep and Adaptive Link
Rate Control Mechanisms for Energy Efficient 10G-EPON,” IEEE/OSA
JOCN, vol. 2, pp. 716–729, 2010.

[12] C. Gunaratne and K. Christensen, “Ethernet Adaptive Link Rate:
System Design and Performance Evaluation,” in Proc. of the 31st IEEE
Conference on Local Computer Networks, 2006, pp. 28–35.

[13] M. Gupta and S. Singh, “Greening of the Internet,” in ACM SIGCOMM,
2003.

[14] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy efficiency
in the future internet: A survey of existing approaches and trends in
energy-aware fixed network infrastructures,” IEEE COMMUNICATIONS
SURVEYS & TUTORIALS, vol. 13, pp. 223–244, 2011.

[15] W. Lu and S. Sahni. Low-Power TCAMs for Very Large Forwarding
Tables. IEEE/ACM ToN, 18:948–959, 2010.

[16] L. Gan, A. Walid, and S. H. Low. Energy-efficient congestion control.
In Proc. of ACM SIGMETRICS, pp. 89-100, 2012.

[17] P. Paul and S. V. Raghavan, “Survey of QoS routing,” in Proc. of the
15th ICCC, 2002, pp. 50–75.

[18] F. Ergun, R. K. Sinha, and L. Zhang, “QoS Routing with Performance-
Dependent Costs,” in Proc. of IEEE INFOCOM, 2000, pp. 137–146.

[19] J. L. Sobrinho, “Algebra and Algorithms for QoS Path Computation
and Hop-by-Hop Routing in the Internet,” IEEE/ACM TON, vol. 10, pp.
541–550, 2002.

[20] M. Andrews, A. F. Anta, L. Zhang, and W. Zhao, “Routing for Energy
Minimization in the Speed Scaling Model,” in Proc. of IEEE Infocom,
2010, pp. 1–9.

[21] M. M. Rahman, S. Saha, U. Chengan, and A. Alfa, “IP Traffic Matrix
Estimation Methods: Comparisons and Improvements,” in Proc. of IEEE
ICC, 2006, pp. 90–96.

[22] Y. Yang and J. Wang, “Design Guidelines for Routing Metrics in
Multihop Wireless Networks,” in Proc. of IEEE INFOCOM, 2008, pp.
1615–1623.

[23] J. Wang and K. Nahrstedt, “Hop-by-Hop Routing Algorithms For
Premium-class Traffic In Diffserv Networks,” ACM SIGCOMM Com-
puter Communication Review, vol. 32, pp. 73–88, 2002.

[24] O. Heckmann, M. Piringer, J. Schmitt, and R. Steinmetz, “Generating
realistic ISP-level network topologies,” IEEE Communications Letters,
vol. 7, pp. 335–336, 2003.

[25] T. Hirayama, S. Arakawa, S. Hosoki, and M. Murata, “Models of link
capacity distribution in ISP’s router-level topologies,” JCNC, vol. 3, pp.
205–216, 2011.

[26] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics
of data centers in the wild,” in Proc. of IMC, pp. 267–280, 2010.

[27] W. Vereecken, W. V. Heddeghem, M. Deruyck, B. Puype, B. Lannoo,
W. Joseph, D. Colle, L. Martens, and M. Pickavet, “Power Consumption
in Telecommunication Networks: Overview and Reduction Strategies,”
IEEE Communications Magazine, vol. 49, pp. 62–69, 2011.

